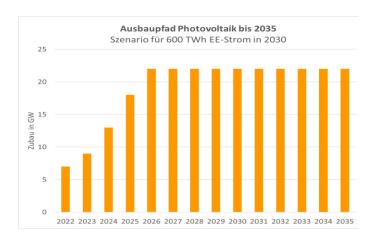


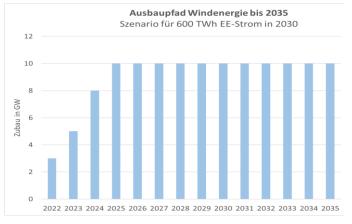
Roadmap Systemstabilität der Bundesregierung

26. Juni 2024

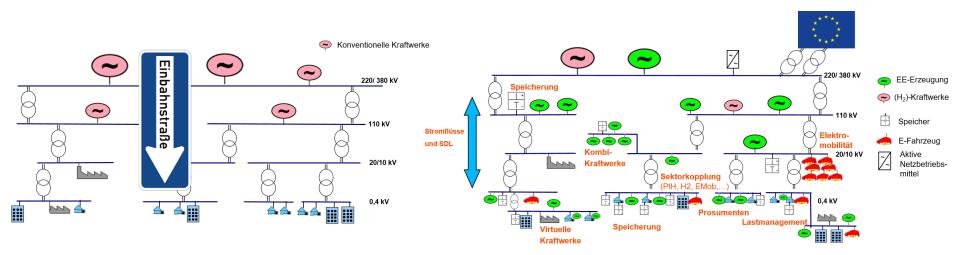
FGW-Mitgliederversammlung

Inhalt


- Hintergrund
- Roadmap Systemstabilität
- Weiteres Vorgehen



Wandel Energiesystem


- Ausbauziele 2030: 360 GW EE
 - PV: 215 GW
 - Wind Land: 115 GW
 - Wind See: 2030: min. 30 GW
 - → ab 2026 min. 35 GW/a EE-Zubau nur in DE
- > Zusätzliche Verbraucher bis 2030
 - 15 Mio. Elektro-Pkw
 - 1 Mio. öffentl. Ladepunkte
 - 6 Mio. Wärmepumpen
 - 10 GW Elektrolyse-Anlagen
- → Anlagen müssen "richtige" Eigenschaften
 - Bundesministerium für Wirtschaft und Klimaschutz

 Bundesministerium für Zukünftiges Stromsystem

Vom Monolith zum komplexen System

- → "Elektrotechnischer Wandel" (Synchrongenerator zu Leistungselektronik)
- → Zukünftiger Systembetrieb braucht neue Regeln
- → <u>alle</u> Anlagen müssen stabilitätskonform werden

Handlungsbedarf: Zwischenfazit

→ Fundamentaler und sehr schneller Wandel

- Muss aktiv und breit angegangen werden, alle Akteure notwendig
 → großer Transformationsprozess
- Muss sich auch in Weiterentwicklung SDL / technischen Anforderungen an Anlagen widerspiegeln
 - hoher Zeitdruck, auch aufgrund Vorlaufzeiten für Entwicklung und Einführung
 - <u>alle müssen Beitrag leisten</u> und sich als Teil verstehen
- Regeln müssen massentauglich sein
- Dabei vom Ziel her denken ("energiewendefähig")

Allgemeine Lösungsansätze: 3-Säulen-Modell

Grundsätzlich 3 Arten der Bereitstellung von Systemdienstleistungen:

- technische Anforderungen (verpflichtend, EU-NCs + TAR)
- 2. marktgestützte Beschaffung (vergütet, freiwillig, BNetzA, ÜNB, VNB)
- 3. Netzbetriebsmittel (ÜNB, VNB)
- → Bedarfe (zeitlich und Menge) bei einzelnen Themen so groß, dass alle Optionen genutzt und alle Spannungsebenen eingebunden werden müssen

Einordnung Systemstabilität

- **Systemstabilität** = Systemsicherheit
 - ≠ marktliche Versorgungssicherheit
- sicherer und robuster Netzbetrieb mit 100% EE, unabhängig von sonstiger Zusammensetzung des Kraftwerksparks
 - → "Betriebssystem" der Stromversorgung

Ziele/Inhalt Roadmap Systemstabilität

• Übergeordnetes Ziel: sicherer und robuster Systembetrieb bei 100% EE

Roadmap: Fahrplan wie wir das erreichen

WAS? Herausforderungen/ Handlungsbedarf identifizieren

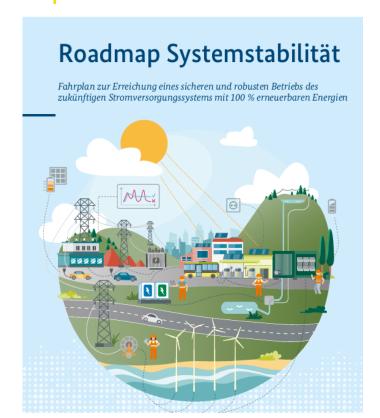
Verantwortlichkeiten und Prozesse benennen WER?

WANN? Zeitschiene, auch Basis für Umsetzung/Monitoring

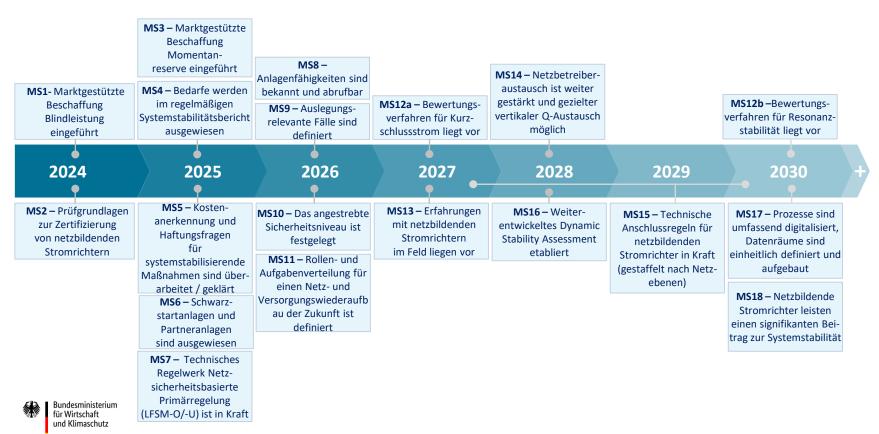
→ strategische und koordinierende Funktion auch bei Umsetzung und Monitoring

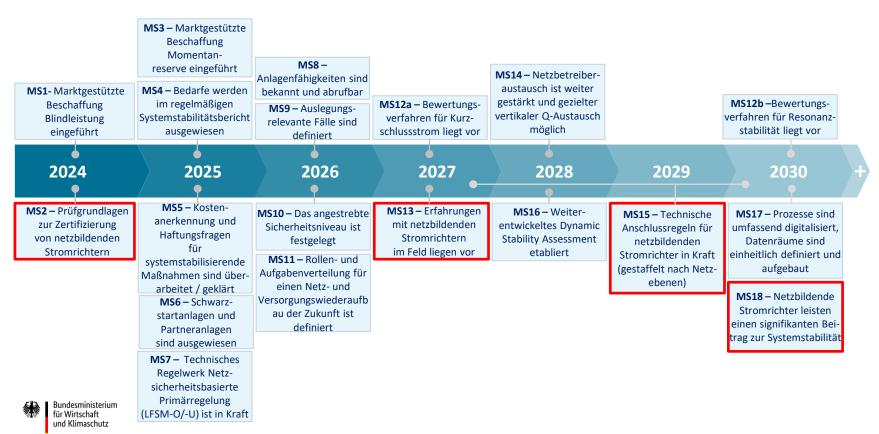
Roadmap Systemstabilität: Vorgehen Erstellung

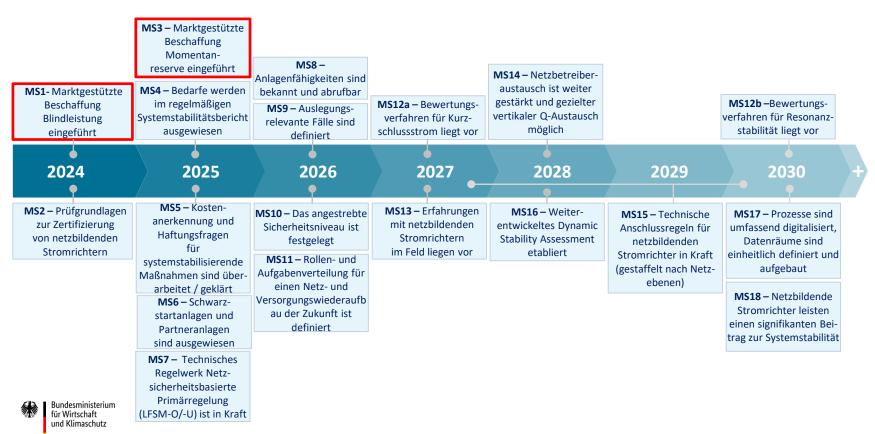
- Breiter Stakeholder-Prozess (seit Herbst 2022)
 - Verbände, Netz- und Anlagenbetreiber, FNN, DKE, Wissenschaft; BNetzA/BMWK
 - insgesamt über 150 Personen aus mehr als 80 Institutionen
- Erarbeitung Roadmap mit aktiver Akteursbeteiligung
 - 4 thematische Arbeitsgruppen mit 11 Untergruppen
 - Beirat
 - insgesamt über 70 Sitzungen
 - Themenfelder strukturiert untersucht, aufbereitet und diskutiert, konkrete Textbeiträge geliefert, zu Roadmap zusammengeführt
 - Unterstützung durch Auftragnehmer ef.Ruhr und dena

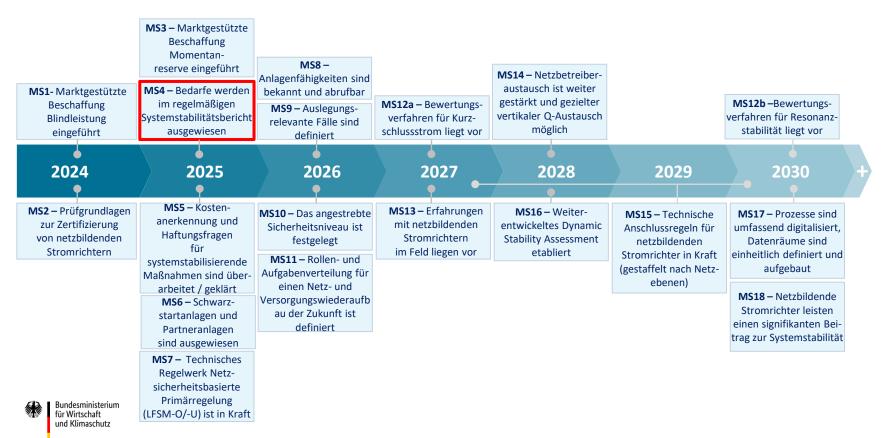


Roadmap Systemstabilität

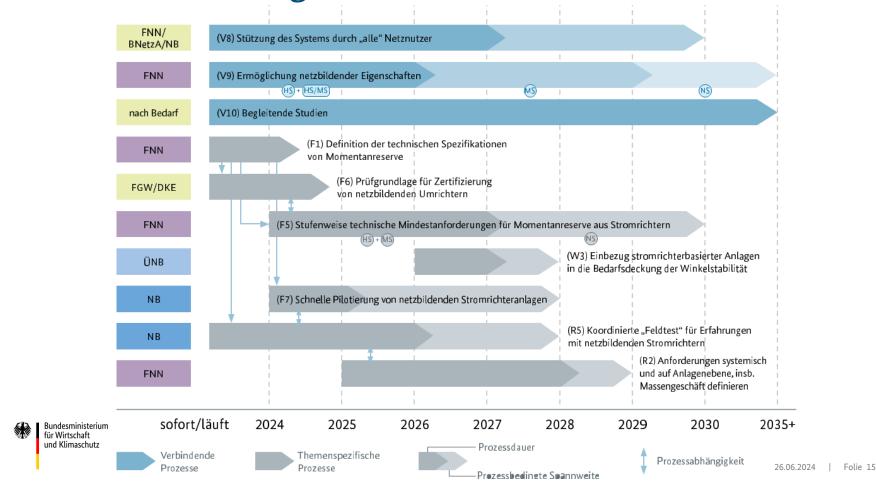


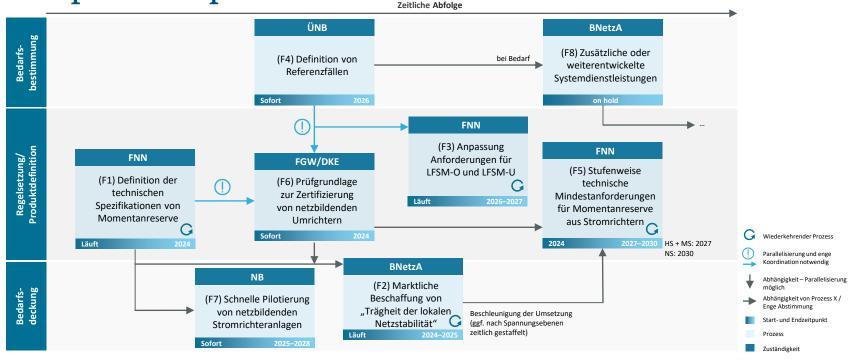

7 Themenfelder


- Frequenz
- Spannung
- Resonanzstabilität
- Kurzschlussstrom
- Winkelstabilität
- Betriebsführung
- Netz-/Versorgungswiederaufbau


41 Themenspezifische Prozesse

10 Verbindende Prozesse (themenfeldübergreifend)





Prozesse Handlungsfeld "Netzbildende Stromrichter"

Prozessabhängigkeiten nach Themenfeldern: Beispiel Frequenz

aktueller Stand, weiteres Vorgehen

- Roadmap Systemstabilität mit Branche erarbeitet
- Beschluss Bundesregierung (Kabinett) und Veröffentlichung Roadmap
 Systemstabilität: 6. Dezember 2023
 - www.bmwk.de/Redaktion/DE/Dossier/roadmap-systemstabilitaet.html
- Jetzt: Umsetzung (alle Akteure) und Monitoring (BNetzA/BMWK), nachjustieren
- Konferenz (18.04.2024)
- Forum Systemstabilität (Start 19.04.2024), zentrales Begleitgremium

Fazit

- Systemänderungen kommen auf <u>alle</u> zu
- Bereiten Sie sich auf die Änderungen vor
- aktive Mitgestaltung an Umsetzungsprozessen notwendig und erwünscht
- Strukturen geben klaren Rahmen
- Jedes Projekt auf jeder Spannungsebene wird zukünftig deutlich größere Beiträge zur Systemstabilität verbindlich liefern müssen

Vielen Dank für die Aufmerksamkeit!

M.Sc. Alexander Folz Regierungsdirektor Bundesministerium für Wirtschaft und Klimaschutz Referat IIIC4 – Systemsicherheit – Scharnhorststraße 34-37, 10115 Berlin Telefon: 030 18 615 6648

E-Mail: Alexander.Folz@bmwk.bund.de

Zielbild Roadmap Systemstabilität

Erneuerbare und Stromrichter

Wind- und Solarenergie sind zukünftig die tragenden Säulen der Stromerzeugung.

Netz- und Versorgungswiederaufbau

Der Wiederaufbau erfolgt unter Einbezug einer hohen Anzahl dezentraler Erzeugungsanlagen, Speicher und Verbraucher im Verteilnetz.

Leistungsschwankungen

Schwankungen der Leistung, bspw. aufgrund überregionaler Leistungstransite und extremer Schwankungen der Umweltbedingungen, werden beherrscht.

Leistungstransite

Die Stabilität des Systems ist auch beim Ausfall von größeren überregionalen Leistungstransiten und möglicher System-Splits gewährleistet.

Sektorenkopplung, Digitalisierung & Flexibilität

Die Potenziale der Digitalisierung werden aktiv durch eine sichere IKT-Anbindung genutzt.

Cyber-physische Resilienz

Der Systembetrieb ist resilient gegenüber Störungen der IKT-Infrastruktur und der primärtechnischen Hardware.

Verlagerung und Dezentralisierung

Die Systemstabilität wird maßgeblich von den Eigenschaften der Erzeugungs- und Verbrauchsanlagen im Verteilnetz mitbestimmt. **N-1**

Optimierung und Höherauslastung der Netze

Die Stromnetze werden optimiert ausgelastet bei Beibehaltung des (n-1)-Prinzips.